Categories
coding solutions

Codility MaxDoubleSliceSum Solution

MaxDoubleSliceSum Solution

Task

The task is a variation of the Maximum subarray problem found in the max slice sum task:

A non-empty array A consisting of N integers is given.

A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.

The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + … + A[Y − 1] + A[Y + 1] + A[Y + 2] + … + A[Z − 1].

For example, array A such that:

A[0] = 3 A[1] = 2 A[2] = 6 A[3] = -1 A[4] = 4 A[5] = 5 A[6] = -1 A[7] = 2

contains the following example double slices:

  • double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
  • double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
  • double slice (3, 4, 5), sum is 0.

The goal is to find the maximal sum of any double slice.

Write a function:int solution(vector<int> &A);

that, given a non-empty array A consisting of N integers, returns the maximal sum of any double slice.

For example, given:

A[0] = 3 A[1] = 2 A[2] = 6 A[3] = -1 A[4] = 4 A[5] = 5 A[6] = -1 A[7] = 2

the function should return 17, because no double slice of array A has a sum of greater than 17.

Write an efficient algorithm for the following assumptions:

  • N is an integer within the range [3..100,000];
  • each element of array A is an integer within the range [−10,000..10,000].

Solution

The key to this is noticing that given a value of Y, the optimum values of X and Z are independent.
So the solution is to iterate over the Y values, finding the optimum max slice for the interval (Y,Z), as in the max slice sum task, and using a precomputed solution for the optimum slice (X,Y).
int solution(vector<int> &A) { assert(A.size() >= 3); vector<int> partials(A.size()); int sliceMax = 0; for (size_t i = 1; i < A.size(); i++) { int a = A[i]; // slice can be empty sliceMax = max(sliceMax + a, 0); partials[i] = sliceMax; } sliceMax = 0; int res = 0; // 0 slways possible as a result for (size_t y = A.size() – 2; y > 0; y–) { int a = A[y + 1]; // min Z is N-1, so if Y= N-2 then upper slice is 0 if (y == A.size() – 2) a = 0; sliceMax = max(sliceMax + a, 0); int dblemax = sliceMax + partials[y – 1]; res = max(res, dblemax); } return res; }

Test Function

This code tests the solution

void testSoln(vector<int> A, int exp) { assert(solution(A) == exp); } int main() { testSoln(vector<int>{3, 2, 6, -1, 4, 5, -1, 2}, 17); testSoln(vector<int>{-9000, -9000, -9000}, 0); testSoln(vector<int>(100000, 0), 0); testSoln(vector<int>(100000, 1), 99997); testSoln(vector<int>{1, 2, 3}, 0); testSoln(vector<int>{1, 1, 1, 1}, 1); testSoln(vector<int>{1, 10, 1, 1}, 10); testSoln(vector<int>{1, -10, -10, 7, 1}, 7); testSoln(vector<int>{-1, -10, -10, -7, -1}, 0); testSoln(vector<int>{-2 – 3, 4, -1, -2, 1, 5, -3}, 9); testSoln(vector<int>{1, 1, 0, 10, -100, 10, 0}, 21); testSoln(vector<int>{0, 10, -5, -2, 0}, 10); }

Results

Codility Results

Correctness100%
Performance100%
Time ComplexityO(N)

Other Solutions

These are some other solutions to this problem on the web. These all use some variation on the above.

Index of solutions to Codility Lessons

Leave a Reply

Your email address will not be published. Required fields are marked *