MaxCounters
Task
You are given N counters, initially set to 0, and you have two possible operations on them:
- increase(X) − counter X is increased by 1,
- max counter − all counters are set to the maximum value of any counter.
A non-empty array A of M integers is given. This array represents consecutive operations:
- if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
- if A[K] = N + 1 then operation K is max counter.
For example, given integer N = 5 and array A such that:
A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
Write a function:
vector<int> solution(int N, vector<int> &A);
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
Result array should be returned as an array of integers.
For example, given:
A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4
the function should return [3, 2, 2, 4, 2], as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..100,000];
- each element of array A is an integer within the range [1..N + 1].
Solution
#include <iostream>
using namespace std;
#include <cassert>
#include <vector>
vector<int> solution(int N, vector<int> &A) {
// write your code in C++14 (g++ 6.2.0)
vector<int> res(N);
int lastMaxSet = -1, maxVal = 0;
for (size_t i = 0; i < A.size(); i++) {
int cmd = A[i];
assert(cmd <= N + 1);
assert(cmd >= 1);
if (cmd == N + 1) {
// set all to max
lastMaxSet = maxVal;
} else {
int curVal = res[cmd – 1];
// any items < last max have not been set to max yet
if (curVal < lastMaxSet) {
curVal = lastMaxSet;
}
curVal++;
res[cmd – 1] = curVal;
maxVal = max(curVal, maxVal);
}
} // for each cmd
// now update with any pending max
for (size_t i = 0; i < N; i++) {
int curVal = res[i];
if (curVal < lastMaxSet) {
res[i] = lastMaxSet;
}
} // for each in result
return res;
}
Test Function
This code tests the solution
int main() {
vector<int> v1{3, 4, 4, 6, 1, 4, 4};
vector<int> exp1{3, 2, 2, 4, 2};
vector<int> res = solution(5, v1);
assert(res.size() == exp1.size());
for (size_t i = 0; i < exp1.size(); i++) {
assert(res[i] == exp1[i]);
}
vector<int> v2{3, 4, 4, 100001, 1, 4, 4};
vector<int> exp2{3, 2, 2, 4, 2,2,2,2,2,2,2};
res = solution(100000, v2);
for (size_t i = 0; i < exp1.size(); i++) {
assert(res[i] == exp2[i]);
}
return 0;
}
Results
Correctness | 100% |
Performance | 100% |
Time Complexity | O(N+M) |